Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pd nanoparticles on SnO2(Sb) whiskers: Aggregation and reactivity in CO detection

Identifieur interne : 000754 ( Main/Repository ); précédent : 000753; suivant : 000755

Pd nanoparticles on SnO2(Sb) whiskers: Aggregation and reactivity in CO detection

Auteurs : RBID : Pascal:13-0205060

Descripteurs français

English descriptors

Abstract

Single crystal antimony-doped SnO2 whiskers have been synthesized by in situ doping process in horizontal flow reactor. The produced whiskers were modified with 0.1, 0.2, 0.5, 1 or 2 wt.% Pd. The processes of Pd particles growth and aggregation are described on the base of AFM and STEM data. Depending on the content of introduced Pd precursor, the various mechanisms (Volmer-Weber or Stranski-Krastanov) of Pd nanoparticles growth realize. The dependence of sensor signal to CO on Pd concentration has non-monotonous character determined by the size of Pd nanoparticles and their aggregation degree. The best sensor signal toward CO was observed for whiskers decorated with 0.1 wt.% Pd. This concentration corresponds to the presence of individual 3-5 nm Pd nanoparticles on the surface of the whiskers.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0205060

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Pd nanoparticles on SnO
<sub>2</sub>
(Sb) whiskers: Aggregation and reactivity in CO detection</title>
<author>
<name sortKey="Zhukova, A A" uniqKey="Zhukova A">A. A. Zhukova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chemistry Department, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rumyantseva, M N" uniqKey="Rumyantseva M">M. N. Rumyantseva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chemistry Department, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zaytsev, V B" uniqKey="Zaytsev V">V. B. Zaytsev</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Faculty of Physics, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zaytseva, A V" uniqKey="Zaytseva A">A. V. Zaytseva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Laboratory of Physicochemistry of Nanoparticles, AETechnologies Ltd</s1>
<s2>107045 Moscow</s2>
<s3>RUS</s3>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Abakumov, A M" uniqKey="Abakumov A">A. M. Abakumov</name>
<affiliation wicri:level="4">
<inist:fA14 i1="04">
<s1>EMAT University of Antwerp</s1>
<s2>2020 Antwerp</s2>
<s3>BEL</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Belgique</country>
<wicri:noRegion>EMAT University of Antwerp</wicri:noRegion>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gaskov, A M" uniqKey="Gaskov A">A. M. Gaskov</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Chemistry Department, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Russie</country>
<placeName>
<settlement type="city">Moscou</settlement>
<region>District fédéral central</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0205060</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0205060 INIST</idno>
<idno type="RBID">Pascal:13-0205060</idno>
<idno type="wicri:Area/Main/Corpus">000C45</idno>
<idno type="wicri:Area/Main/Repository">000754</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0925-8388</idno>
<title level="j" type="abbreviated">J. alloys compd.</title>
<title level="j" type="main">Journal of alloys and compounds</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aggregation</term>
<term>Antimony additions</term>
<term>Atomic force microscopy</term>
<term>Gas sensors</term>
<term>Growth mechanism</term>
<term>Indium additions</term>
<term>Monocrystals</term>
<term>Nanomaterial synthesis</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Palladium</term>
<term>Particle size</term>
<term>Precursor</term>
<term>Quantity ratio</term>
<term>Scanning transmission electron microscopy</term>
<term>Stranski-Krastanov growth method</term>
<term>Whiskers</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Palladium</term>
<term>Nanomatériau</term>
<term>Agrégation</term>
<term>Addition antimoine</term>
<term>Addition indium</term>
<term>Mécanisme croissance</term>
<term>Microscopie force atomique</term>
<term>Microscopie électronique balayage transmission</term>
<term>Précurseur</term>
<term>Méthode croissance Stranski-Krastanov</term>
<term>Synthèse nanomatériau</term>
<term>Capteur de gaz</term>
<term>Effet concentration</term>
<term>Dimension particule</term>
<term>Nanoparticule</term>
<term>Trichite</term>
<term>Monocristal</term>
<term>Substrat SnO2</term>
<term>SnO2</term>
<term>8107</term>
<term>8110A</term>
<term>8116</term>
<term>0707D</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Single crystal antimony-doped SnO
<sub>2</sub>
whiskers have been synthesized by in situ doping process in horizontal flow reactor. The produced whiskers were modified with 0.1, 0.2, 0.5, 1 or 2 wt.% Pd. The processes of Pd particles growth and aggregation are described on the base of AFM and STEM data. Depending on the content of introduced Pd precursor, the various mechanisms (Volmer-Weber or Stranski-Krastanov) of Pd nanoparticles growth realize. The dependence of sensor signal to CO on Pd concentration has non-monotonous character determined by the size of Pd nanoparticles and their aggregation degree. The best sensor signal toward CO was observed for whiskers decorated with 0.1 wt.% Pd. This concentration corresponds to the presence of individual 3-5 nm Pd nanoparticles on the surface of the whiskers.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0925-8388</s0>
</fA01>
<fA03 i2="1">
<s0>J. alloys compd.</s0>
</fA03>
<fA05>
<s2>565</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Pd nanoparticles on SnO
<sub>2</sub>
(Sb) whiskers: Aggregation and reactivity in CO detection</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHUKOVA (A. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RUMYANTSEVA (M. N.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZAYTSEV (V. B.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ZAYTSEVA (A. V.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ABAKUMOV (A. M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GASKOV (A. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Chemistry Department, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Faculty of Physics, Moscow State University</s1>
<s2>119991 Moscow</s2>
<s3>RUS</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Laboratory of Physicochemistry of Nanoparticles, AETechnologies Ltd</s1>
<s2>107045 Moscow</s2>
<s3>RUS</s3>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>EMAT University of Antwerp</s1>
<s2>2020 Antwerp</s2>
<s3>BEL</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>6-10</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>1151</s2>
<s5>354000504139060020</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0205060</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of alloys and compounds</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Single crystal antimony-doped SnO
<sub>2</sub>
whiskers have been synthesized by in situ doping process in horizontal flow reactor. The produced whiskers were modified with 0.1, 0.2, 0.5, 1 or 2 wt.% Pd. The processes of Pd particles growth and aggregation are described on the base of AFM and STEM data. Depending on the content of introduced Pd precursor, the various mechanisms (Volmer-Weber or Stranski-Krastanov) of Pd nanoparticles growth realize. The dependence of sensor signal to CO on Pd concentration has non-monotonous character determined by the size of Pd nanoparticles and their aggregation degree. The best sensor signal toward CO was observed for whiskers decorated with 0.1 wt.% Pd. This concentration corresponds to the presence of individual 3-5 nm Pd nanoparticles on the surface of the whiskers.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07W</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G07D</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Palladium</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Palladium</s0>
<s2>NC</s2>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Agrégation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Aggregation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Addition antimoine</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Antimony additions</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Microscopie force atomique</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Atomic force microscopy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Microscopie électronique balayage transmission</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Scanning transmission electron microscopy</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Précurseur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Precursor</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Méthode croissance Stranski-Krastanov</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Stranski-Krastanov growth method</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Método crecimiento Stranski-Krastanov</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Capteur de gaz</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gas sensors</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Effet concentration</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Quantity ratio</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Dimension particule</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Particle size</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Trichite</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Whiskers</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Monocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Monocrystals</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Substrat SnO2</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>SnO2</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8116</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>0707D</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>189</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000754 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000754 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0205060
   |texte=   Pd nanoparticles on SnO2(Sb) whiskers: Aggregation and reactivity in CO detection
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024